Kamis, 15 Oktober 2009

Art Of Rainbow

Rainbows are generally described as very colourful and peaceful. The rainbow occurs often in paintings. Frequently these have a symbolic or programmatic significance (for example, Albrecht Dürer's Melancholia I). In particular, the rainbow appears regularly in religious art (for example, Joseph Anton Koch's Noah's Thanksoffering). Romantic landscape painters such as Turner and Constable were more concerned with recording fleeting effects of light (for example, Constable's Salisbury Cathedral from the Meadows). Other notable examples appear in work by Hans Memling, Caspar David Friedrich, and Peter Paul Rubens.

The Blind Girl, oil painting (1856) by John Everett Millais. The rainbow – one of the beauties of nature that the blind girl cannot experience – is used to underline the pathos of her condition.
Noah's Thanksoffering (c.1803) by Joseph Anton Koch. Noah builds an altar to the Lord after being delivered from the Flood; God sends the rainbow as a sign of his covenant (Genesis 8-9).

Religion and Mythology


The end of a rainbow.

The rainbow has a place in legend owing to its beauty and the historical difficulty in explaining the phenomenon.

In Greek mythology, the rainbow was considered to be a path made by a messenger (Iris) between Earth and Heaven. In Chinese mythology, the rainbow was a slit in the sky sealed by Goddess Nüwa using stones of five different colours. In Hindu mythology, the rainbow is called "Indradhanush", meaning the bow (Sanskrit & Hindi: dhanush is bow) of Indra, the God of lightning, thunder and rain. Another Indian mythology says rainbow is the bow of Kama, the God of love. It is called Kamanabillu in Kannada, billu meaning bow. In Norse Mythology, a rainbow called the Bifröst Bridge connects the realms of Ásgard and Midgard, homes of the gods and humans, respectively. The Irish leprechaun's secret hiding place for his pot of gold is usually said to be at the end of the rainbow. This place is impossible to reach, because the rainbow is an optical effect which depends on the location of the viewer. When walking towards the end of a rainbow, it will move further away.

After Noah's Flood, the Bible relates that the rainbow gained meaning as the sign of God's promise that terrestrial life would never again be destroyed by flood (Genesis 9.13-15)[25]:

I have set my bow in the clouds, and it shall be a sign of the covenant between me and the earth. When I bring clouds over the earth and the bow is seen in the clouds, I will remember my covenant that is between me and you and every living creature of all flesh; and the waters shall never again become a flood to destroy all flesh.

Another ancient portrayal of the rainbow is given in the Epic of Gilgamesh: the rainbow is the "jewelled necklace of the Great Mother Ishtar" that she lifts into the sky as a promise that she "will never forget these days of the great flood" that destroyed her children. (The Epic of Gilgamesh, Tablet Eleven)

Then Ishtar arrived. She lifted up the necklace of great jewels that her father, Anu, had created to please her and said, "Heavenly gods, as surely as this jewelled necklace hangs upon my neck, I will never forget these days of the great flood. Let all of the gods except Enlil come to the offering. Enlil may not come, for without reason he brought forth the flood that destroyed my people."

In the Dreamtime of Australian Aboriginal mythology, the rainbow snake is the deity governing water.

In New Age and Hindu philosophy, the seven colours of the rainbow represent the seven chakras, from the first chakra (red) to the seventh chakra (violet).

Reflected Rainbow, Reflection Rainbow

Reflection rainbow and normal rainbow, at sunset

When a rainbow appears above a body of water, two complementary mirror bows may be seen below and above the horizon, originating from different light paths. Their names are slightly different. A reflected rainbow will appear as a mirror image in the water surface below the horizon, if the surface is quiet (see photo above). The sunlight is first deflected by the raindrops, and then reflected off the body of water, before reaching the observer. The reflected rainbow is frequently visible, at least partially, even in small puddles.

Where sunlight reflects off a body of water before reaching the raindrops (see diagram), it may produce a reflection rainbow (see photo at the right), if the water body is large, and quiet over its entire surface, and close to the rain curtain. The reflection rainbow appears above the horizon. It intersects the normal rainbow at the horizon, and its arc reaches higher in the sky. Due to the combination of requirements, a reflection rainbow is rarely visible.

Six (or even eight) bows may be distinguished if the reflection of the reflection bow, and the secondary bow with its reflections happen to appear as well.[6]

Supernumerary rainbow

A contrast-enhanced photograph of a supernumerary rainbow, with additional green and purple arcs inside the primary bow.

A supernumerary rainbow is an infrequent phenomenon, consisting of several faint rainbows on the inner side of the primary rainbow, and very rarely also outside the secondary rainbow. Supernumerary rainbows are slightly detached and have pastel colour bands that do not fit the usual pattern.

It is not possible to explain their existence using classical geometric optics. The alternating faint rainbows are caused by interference between rays of light following slightly different paths with slightly varying lengths within the raindrops. Some rays are in phase, reinforcing each other through constructive interference, creating a bright band; others are out of phase by up to half a wavelength, cancelling each other out through destructive interference, and creating a gap. Given the different angles of refraction for rays of different colours, the patterns of interference are slightly different for rays of different colours, so each bright band is differentiated in colour, creating a miniature rainbow. Supernumerary rainbows are clearest when raindrops are small and of similar size. The very existence of supernumerary rainbows was historically a first indication of the wave nature of light, and the first explanation was provided by Thomas Young in 1804.

Visibility

Rainbows may also form in the spray created by waves (called spray bows).

Rainbows can be observed whenever there are water drops in the air and sunlight shining from behind a person at a low altitude angle (on the ground). The most spectacular rainbow displays happen when half of the sky is still dark with raining clouds and the observer is at a spot with clear sky in the direction of the Sun. The result is a luminous rainbow that contrasts with the darkened background.

The rainbow effect is also commonly seen near waterfalls or fountains. In addition, the effect can be artificially created by dispersing water droplets into the air during a sunny day. Rarely, a moonbow, lunar rainbow or nighttime rainbow, can be seen on strongly moonlit nights. As human visual perception for colour is poor in low light, moonbows are often perceived to be white.[1] It is difficult to photograph the complete semi-circle of a rainbow in one frame, as this would require an angle of view of 84°. For a 35 mm camera, a lens with a focal length of 19 mm or less wide-angle lens would be required. Now that powerful software for stitching several images into a panorama is available, images of the entire arc and even secondary arcs can be created fairly easily from a series of overlapping frames. From an aeroplane, one has the opportunity to see the whole circle of the rainbow, with the plane's shadow in the centre. This phenomenon can be confused with the glory, but a glory is usually much smaller, covering only 5°–20°.

At good visibility conditions (for example, a dark cloud behind the rainbow), the second arc can be seen, with inverse order of colours. At the background of the blue sky, the second arc is barely visible.

Rainbow

Semicircular double rainbow. Supernumerary rainbows on the inside of the primary arc. Shadow of the photographer marks the centre of the rainbow circle (antisolar point).

A rainbow is an optical and meteorological phenomenon that causes a spectrum of light to appear in the sky when the Sun shines onto droplets of moisture in the Earth's atmosphere. They take the form of a multicoloured arc, with red on the outer part of the arch and violet on the inner section of the arch.

Rainbow-diagram-ROYGBIV.svg

A rainbow spans a continuous spectrum of colours; the discrete bands are an artefact of human colour vision. The most commonly cited and remembered sequence, in English, is Newton's sevenfold red, orange, yellow, green, blue, indigo and violet (popularly memorized by mnemonics like Roy G. Biv). Rainbows can be caused by other forms of water than rain, including mist, spray, and dew.

Rainbows may also form in mist, such as that of a waterfall
Rainbow with a faint reflected rainbow in the lake